Article | 3. 2019 Vol. 3, Issue. 2
Comparative Analysis of Two Somatotropic Axis Genes in Slow and Fast Growing Chickens



Nigeria Agricultural Quarantine Service, Post-Entry Diagnostic Station, Moor Plantation,Ibadan, Nigeria.1
Quantitative, Molecular and Functional Genetics Group, Department of Animal Production, Faculty of Agriculture, University of Ilorin,Ilorin, Nigeria.2




2019.3.  45:58


PDF XML




Somatotropic Axis Genes are candidate genes for differential growth determination. Component exons (and 50 bases immediately 5’ and 3’ of each exon) of IGF1 (4 Exons) and cGH (5 Exons), were amplified from DNA of fast (Hubbard Broiler, HB), and slow (Nigerian Local Chickens: Fulani Ecotype, FE and Yoruba Ecotype, YE) growing chickens. Sequenced and aligned against each other and against Genbank published orthologs spanning Aves, Mammals, Pisces and other vertebrates. Phylograms were constructed from aligned sequences. Regulatory motifs within noncoding DNA sequence were identified. Of the exons examined, all but exon 5 of cGH were successfully amplified in all breeds. However, only 33% of IGF1 (HB, exon 2 and 3; FE exon 3; YE exon 2) and 42% of cGH (HB, exon 2 and 3; FE exon 1 and 3; YE exon 1) exons were successfully sequenced. No inter-breed (between HB, YF, and FE) coding sequence polymorphisms were detected. Equally, none was detected in comparisons with published Jungle Fowl sequence (RJF; ENSGALT00000000328 and ENSGALT00000020816, Ensembl.org). Four polymorphisms were detected in the 5’ and 3’ flanking DNA of sequenced exons, including: a cGH 1644 A>G (RJF > HB, FE) single nucleotide polymorphism or SNP; a cGH 1850 G>A (RJF > FE) SNP; a cGH 1860 T>C (RJF >FE) SNP and; an IGF1 4662 – 4673insT insertion polymorphism. Three of these polymorphisms overlapped regulatory motifs. The lack of polymorphisms in aligned sequences suggests these particular Exons are not responsible for the differences in growth rate observed between the breeds.



1. Adebambo A.O. (2003). Animal Breeds: A Nation Heritage. UNAAB Inaugural Lecture Series No. 16  

2. Adebambo A.O., V.A. Mobegi, J.M. Mwacharo, B.M. Oladejo, R.A. Adewale, L.O. Ilori, B.O. Makanjuola, O. Afolayan, G. Bjørnstad, H. Jianlin and O. Hanotte (2010). Lack of Phylogeographic Structure in Nigerian Village Chickens Revealed by Mitochondrial DNA D-loop Sequence Analysis. International Journal of Poultry Science 9 (5): 503-507, 2010 ISSN 1682-8356  

3. Notification of Ministry of Agriculture, Food and Rural Affairs . 2013. DNA Identity Test Method for Individual Identification of Cattle and Beef. Ministry of Agriculture, Food and Rural Affairs. 53.  

4. Adebambo, O.A., Ikeobi, C.O.N., Ozoje, M.O., and J.A. Adenowo. (1999). Color variations and performance characteristics of the indigenous chicken of South Western Nigeria. Nigerian Journal of Animal Production 26:15-22.  

5. Choi TJ, Kim SD, Salces AJ, Baik DH. 2006. Genetic Parameter Estimation on the Growth and Carcass Traits in Hanwoo (Korean cattle). Kor. J. Anim. Sci. Technol. 48(6): 759-766.  

6. Ajayi F.O. (2010). Nigerian Indigenous Chicken: A Valuable Genetic Resource for Meat and Egg Production. Asian Journal of Poultry Science, 4: 164-172.  

7. Bianda T., Zapf J., Froesch E. R. and C. Schmid (1999). Insulin-like growth factor-I lowers fasting and postprandial triglyceride levels without affecting chylomicron clearance in healthy men. Journal of International Medicine, 245: 455–462. doi:10.1046/j.1365-2796.1999.00501.x  

8. Corpet F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. Nov 25; 16(22):10881-90. (PubMed)  

9. Costa, Robert H., Grayson, Dennis R., Xanthopoulos, Kleanthis G., and James E. Darnell, Jr. (1988). A liverspecific DNA-binding protein recognizes multiple nucleotide sites in regulatory regions of transthyretin, a1- antitrypsin, albumin, and simian virus 40 genes. Proc. Natl. Acad. Sci. USA; Vol. 85, pp. 3840-3844.  

10. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J.F., Guindon S., Lefort V., Lescot M., Claverie J.M., and O. Gascuel (2008). Phylogeny.fr: robust phylogenetic analysis for the nonspecialist. Nucleic Acids Res. 2008 Jul 1;36 (Web Server issue):W465-9. Epub 2008 Apr 19. (PubMed).  

11. Duclos M. J. (2005). Insulin-like growth factor-I (IGF-1) mRNA levels and chicken muscle growth. J Physiol Pharmacol 56: 25−35.  

12. Enayati, B., and Rahimi-Mianji, G. (2009). Genomic growth hormone, growth hormone receptor and transforming growth factor b-3 gene polymorphism in breeder hens of Mazandaran native fowls. African Journal of Biotechnology, 8(14), 3154-3159.  

13. FinchTV 1.4.0 (Geospiza, Inc.; Seattle, WA, USA; http://www.geospiza.com)  

14. Hoshiyama Daisuke, Iwabe Naoyuki and Miyata Takashi (2007). Evolution of the gene families forming the Pax/Six regulatory network: Isolation of genes from primitive animals and molecular phylogenetic analyses. FEBS Letters, 581, doi: 10.1016/j.febslet.2007.03.027  

15. Höppener J.W.M., Steenbergh P.H., Zandberg J., Geurts van Kessel A.H.M., Baylin S.B., Nelkin B.D., Jansz H.S., and C.J.M. Lips (1985). Detection of mRNA encoding calcitonin, calcitonin gene related peptide and proopiomelanocortin in human tumors. Molecular and Cellular Endocrinology; Volume 47, Issues 1–2, September 1986, Pages 125-130  

16. Kadlec, J., Hosnedlova, B., Rehout, V., Citek, J., Vecerek, L., and L. Hanusova, (2011). Insulin like growth factor-I gene polymorphism and its association with growth and slaughter characteristics in broiler chickens. J. Agrobiol. 28(2): 157–163.  

17. Lei M. M., Nie Q. H., Peng X., Zhang D. X., and Q. Zhang (2005). Single nucleotide polymorphisms of the chicken insulin-like factor binding protein 2 gene associated with chicken growth and carcass traits. Poultry Sci 84: 1191–1198.  

18. Mitchell P. J., and R. Tjian (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371.  

19. Mukhopadhyay, C.S. and Dinesh Kumar (2013). Genomic Selection: Its Prospects and Challenges. Theory Session: DBT Funded short term training programme on “Functional Genomic Analysis for Livestock Improvement”, delivered on 23rd January’ 2013 at Project Directorate on Cattle, Grass Farm Road, Meerut, UP, organized during 22nd January’ 2013 to 4th February’ 2013.  

20. Nie, Q., Lei, M., Ouyang, J., Zeng, H., Tang, G., and X. Zhang (2005). Identification and characterization of single nucleotide polymorphisms in 12 chicken growth-correlated genes by denaturing high performance liquid chromatography. Genet Sel. Evol. 37:339 360  

21. Nwosu, C.C., F.C. Obioha, G. Fred, T. C. Belonwu, G.I. Onuora, S.S.I. and S. S. Omeje (1980). A study of the growth pattern of local and exotic chickens. Nig. J. Animal Prod., 7: 38-38.  

22. Obanu L.A.; Obioha F.C, and W.A. Nwafor (1994). World Rev. of Anim. Prod 20:53-57.  

23. Obioha, F.C.,Nwosu, C.C., Gowen, F, Etim, D.B.,Obanu Z., Themelandi E., and G.I. Onuora (1983). Comparative meat yield and arthropometric indices of the Nigerian native chicken and an exotic strain. World Review of Animal Production 19 (1): 58-64.  

24. Oluyemi J. A., Longe G. O. and T. Sunga (1982). Requirement of the Nigerian indigenous fowl for protein and amino acids. Ife Journal of Agriculture, 4: 105-110.  

25. Orkin, Stuart H. (1992). GATA- Binding Transcript ion Factors in Hematopoietic Cells. Blood, VOI 80, NO 3 (August l), 1992: pp 575-581.  

26. Qui, F. F., Nie, Q. H., Luo, C. L., Zhang, D. X., Lin, S. M., and X. Q. Zhang (2006). Association of Single Nucleotide Polymorphisms of the Insulin Gene with Chicken Early Growth and Fat Deposition. Poult Sci 85:980–985.  

27. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, et al. (2008). Multigene Phylogeny of Choanozoa and the Origin of Animals. PLoS ONE 3(5): e2098. https://doi.org/10.1371/ journal.pone.0002098  

28. Vasilatos-Younken R, Zhou Y, Wang X, McMurtry JP, Rosebrough RW, Decuypere E, Buys N, Darras VM, Van Der Geyten S., and F. Tomas (2000). Altered chicken thyroid hormone metabolism with chronic GH enhancement in vivo: consequences for skeletal muscle growth. J Endocrinol. 2000; 166:609–620.  

29. Wang Zhiyong, Goldstein Adrian, Zong Rui-Ting, Lin Danjun, Neufeld, Ellis J., Scheuermann, Richard H., and Philip W. Tucker. (1999). Cux/CDP Homeoprotein is a Component of NF- μNR and Represses the Immunoglobulin Heavy Chain Intronic Enhancer by Antagonizing the Bright Transcription Activator. Mol. Cell. Biol. 1999, 19(1):284.  

30. Wang, Q., Li H., Li N., Leng L., Wang Y. and Z. Tang, (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci., 85: 429-434.  

31. Winner D.G. Jr, Ealy A.D., Hannon K., and S.E. Johnson (2006). Ectopic insulin-like growth factor I expression in avian skeletal muscle prevents expression of CMD4, a novel inhibitor of differentiation. Domest Anim Endocrinol. 2006 Nov; 31(4):312-26. Epub 2005 Dec 19.  

32. Zhou Xiaofan, Zhenguo Lin and Hong Ma (2010). Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biology 2010 11:R38.